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Conformal Background of Euclidean
Trigonometry

Klaus Ruthenberg

Abstract. Essential parts of Euclidean trigonometrv can be seen as
trigonometrv of conformal tetraglobes. \{etrical basic structures of natu-
rai 3-dimensional space mav be defined with the help of tetraglobes as first
elements of this space, without using Euclidean basic concepts as 'straight

l ine'.  ' length' and ' local i tv ' .

Introduction

This paper is tlie second part of the work reported in [3] which for brevity will

be denoted by'Artic;le i ' . and I.x v,.i l l  denote item numbered x in I, that is, in [3].
Measurernent of angles and elementary angle functions were defined in Article I

rvith the help of real cross ratios. the characteristic nurnbers of 2-circles (Definition

I.6.1). Here vr,e interpret a complez cross ratio as the characteristic number of a 4

circle, wirich leads to a conformai form of Euclidean trigonometry. Four points and

the foru circles through any three of these points produce a 4-circle or tetraglobe.

The traditional form of Euclidean trigonometry defines the measurement of angles

2000 \4athematics Subiect Classification: Primarv: 30C35;
Secondarv: 30E99.

93



RUTHENBERG

by ratios of sides in right-angled triangles and describes the relationship between

lengths and angles in Euclidean triangles. This classical form of trigonometry

starts with the Euciidean concept of. ' l ,engths'of 'strai,ght l ines'. This article

shows that a conformal form of Euclidean trigonometry can be constructed by

starting with the conformal concept of. cross ratio (dou,ble rati,o). Essential parts

of this construction carr be done without using }engths of straight lines. Onl;' at

last, after the measurement of angles and the conformai form of trigonometry are

defi,ned, we may add the concept of length if we (phy'sically) possess units of length.

This 'diametrical' possibility to construct Euclidean trigonometry produces a new

picture of our natural 3-dimensional space. This space (of our visual perception; of

phvsics) can be seen as a conformal space with tetraglobes as first (basic) elements.

The trigonometrl' of tetraglobes defines the (trigono)metrical basic structure of this

space. But only if units of length are added (can be added) the natural space gets

a cornolete Euclidean structure.

1. The parametric description of the cross ratio

I want to shou'that for the Euclidean triangie the sum of angles has a conformal

substratum. \[te take three complex numbers

'trr :  sin-l  a3 'sin ct2' siot
'u )2 :  s in- i  o1 's in  a3 '  s ioz

us : sin-1 cI2 'sin a1 '  siaz

( 1  1 )

with 0 ( ar < zr and define

Definition 1.1. The three compler numbers wp 0,r€ called representatiues, the

three real numbers ap tl'te argurrlerlts of a cgcle {rr}

Lemma L.L. If the representati,ues of a cycle can be seen, as the cyclic permut,a-

tzons of a cross ratio ((1.5.2) - (1.5 /)) the sum, of t,he three. arguments is n.
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CONFO RMAL TRTGONOMETRY

Proof . If the wy ate the cyclic permutations of a cross ratio with (i.5.4) we have

and together with a6 ) 0

w 1 ' U 2 ' U 3  -  - 1

, i .Dax :  _ ]

D o o :  n ' ( 1 . 2  )

tr

Lemma I.2. If Do* : T, the three representati,ues w6 of a cycle are cycli,c

perm,ut,ations of a cross ratio.

Proof. With f o* : zr w€ B€t

trr(1 -  ur3) :

: sin-1 6y3 . sin a2 . sior (1 - sin-l 02 . sin at . eiotl
:  s in- l  a3 .  (s in e2- s iot  *  s in a,  .  e i (ar+os);
:  s in- l  a3 .  (s in { t2.  g io '*  s in ar .  e- ioz1
:  s i n - l  a 3  .  ( s i n o 2  ' c o s  a 1 *  i  ' s i n a 2  . s i n a 1  *  s i n o i  - c o s  a z  -  i . s i n o l  . s i n o 2 )
: sin-l a3 . sin(a r * a2)

The cyclic permutations ur1 and ar3 fulfil tlie first equation of (I.5.3). Also the

second and third equation

q ( 7 - w 2 )  :  1

w 2 ( I - w 1 )  :  1

can be proved bv replacing the indices.

Because everv non-real number '.r,- or its inverse r,u-l can be u'ritten in the form

sin-l  a3 . sin c,2. siot

with 0 ( ar < zi and I oo : ri- w€ B€t
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Theorem 1.1. The 2 x 3 different permutati,ons of a non-real cross ratio can al-
ways be written in, their parametri,c forms

z,+1 :  s in--1(+a3) .s in(+a27 -  " i (+",)  ?r-1 :  s in-1 (-or) .s in(-o3) .  . i ( -")
u+2:  s in -1(+or )  .s in (+a3)  .  " i . {+oz)  u ) -2 :  s in -1( -os)  .s in ( -a1)  . " i . ( -o r )  (1 ,3 )
tr+s:  s in-1(+oz) 's in(+a11 .  e i (+os) ?r,-3 :  s in-1(-a1) .s in(-a2) .  s i ( -"z)

uti,th, the help of 3 real, param.eter.e o1, 0 l ax < n, andLr*: n.

2. The conformal tetraglobe

We get a geometrical interpretation of the cross ratio parametric description

q'ith the help of a conformal basic figure:

Definition 2.1. Four poi,nts and the four con,formal ci,rcles through any three of

these four poin,ts produce a 4-circle or tetraglobe (tetra).

Remarks

1. It is helpful to see four points on one circle as a degenerate 4-circle.

2. 'Tetra' remembers that a 4-circle possesses forir dual elements:

- Three points are on every circle.

- Three circles go through everl' point.

3. Tetra-'g1obe' remembers that the four points of every (not degenerate) 4-

circle define a sphere in the 3-dimensional conformal space; a sphere which
'carries' the 4-circle. This conformal sphere is a 'stage' where the tetra can

be conformally mo.,'ed.

4. A tetraglobe possesses six 2-circles (Section 6 in [3]).

Definition 2.2. Two Z-circles of a tetra without comm.on corners are 2-circles i,n

conforrnal position.
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C ONFORMAL TRIGONOMETRY

I use the expression '2-circles in conformal position' as Germans use the set

phrase 'Figuren in projektiver Lage (figures in projective position)'.

T.lvo 2-circles in conformal position 'generate' a 4-circle. Conversely a 4-circle

can be seen as two 2-circles in conformal position in three ways.

It is often helpful to discuss a conformal tetraglobe in a special, 'Euclidean'

location.

Definition 2.3. A tetraglobe is i,n an Euclidea,n locat'i,on if one of its corners

zs the poin,t z : &.

Remark

1. If rn'e use the traditional Gauss/Argand plane to illustrate a 4-circle in Eu-

clidean location, each tetraglobe looks like an Euclidean triangle together

r','ith its circumcircle. But in conformal geometry the point z : 6 is not a

non proper point: the circles through z : @ appear. if we use this illustra-

tion. like Euclidean straight lines but they are conformal circles; the circle

through the three corners of such an 'Euciidean triangle' is a conformal circle

without centre and radius.

2. It is often helpful to draw conformal circles in the Gauss plane with a ruler

but often a 4-circle drawn on a Riemann sphere gives a better picture of a

tetraglobe. For example this modei demonstrates more directly the svmmetry

of every tetraglobe.

Theorem 2.1. Each conformaltetrais a geometrical, entity wit,h a symmetry group

of four el,ernents.

Proof. Alu,ays a conformal mapping exists v,'hich transforms a 4-circle with the

four points z4 into a special location so that

Z I  :  0 ,  2 2  :  1 ,  2 3  :  C O .  2 4 :  Q ,  ( 2 . 1 )
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where the complex number a is determined by the special shape of the tetra.

with
z t : 0  - - - )  2 2 : 1

z z : I  - - - +  z t : Q  ( 2 2 )
2 3 :  @  - - +  2 4 :  A

we define the mapping

z  - -  z ' ' .  z z '  -  a ( z *  r ' ) f  a  :  0 , (2.3)

rn'hich changes zr, 22 into 22. \ ald zs, 24 inLo 24, zs.

In pairing other points in the same way we get the tetra's symmetry group with

the four elements
z '  -  z : 0

z ' z - a : 0
z ' z - ( z ' + z ) * o : 0

z ' z - a ( z ' + z ) + a : 0 .

(2.4)

D

Theorem 2.2. If two Z-circles of a tetragl,obe li,e in a conformal positi,on their

angles are equal.

Proof . With the three non-identical symmetrl' mappings e\rery pair of 2-circles in

conformal position interchange their positions. n

Definition 2.4. Euerg three Ttoin,ts of a tetraglobe defi,ne a conforrnal triangle;

the fourth pozn,t is the pole of thts triangle. Each poi,nt pair of a conformal triangle

defin,es a si,de of this triangle. Each pair of th.e sides, arcs on the tetraglobe's

circles, def,n,es an a,ngle of the trian,gle

Theorem 2.3. The four conJormal tri,angles of a J-circle are conform,allg equrua-

Ient; euery triangle of a tetra lras three angles of the s&me m,agn,i/ude.

98



CONFORMAL TRIGONOMETRY

Proof. Each conformal triangle of a tetra can be transformed into every other one

with a suitable element of the tetra's symmetrv group. tr

If we identify an angle with its magnitude and if we neglect the difference of
'angle', 'apex angle' and 'adjacent angle' (Definition I.6.2) one may say that at

most three different angles exist in a tetraglobe. These three angles appear in

each triangle of tlie tetraglobe as angies of this triangle. Because in this sense

a tetra possesses at most three different angles we also call such a tetraglobe a

S-angle. This word emphasises both the relationship of a conformal tetraglobe

with an Euclidean triangie and the difference between an Euclidean triangle and a

conformal 3-ansie.

3 . The characteristic number of a tetraglobe

Four points z6 define exactly one conformal, complex cross ratio and exactly

one tetragiobe. In M and in "N4^ (u'ith even )) this number tr,'is in'uariantly bound

with the tetra.

Definition 3.1. Tlte compler cross ratio of tlte four tetraglobe points is the char-

acteristic number of th,e  -circle.

Therefore the characteristic number of a tetraglobe has 2 x 3 'permutations',

namely the 2 x 3 r'ariations (I.5.2) of the cross ratio (i.5.1).

Definition 3.2. The three real param,et.ers ap of the parame.tric representation

(1.3) of a cross ratio are. t,h,e rnagnitudes of the t.hree angles of a, conformal 3-

angle (tetraglobe).

This definition suggests itself because I ** : z- (Theorem 1.1); and in a Gau.ss
plane a tetraglobe in Euclidean location appears as an Euclidean triangle, which
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also has this angle sum. That this definition is also admissible I prove in the fol-

lorn'ing by comparing the measuring of angles by a tetraglobe with the measuring

of angles in Euclidean trigonometry' and rn'ith the help of a measuring circle (Defi-

nition I.7.1). If a cross ratio is seen as the characteristic number of a tetra. often

qualities of a cross ratio can be seen as attributes of a tetraglobe. for instance:

A cross ratio possesses only 2 x 3 different permutations, because the three

angles with the three positive magnitudes *ar and the three negative magnitudes

-a6 (Theorem 1.1 with (1 3)) have onll '2 x 3 permutations.

The characteristic number w of a tetraglobe changes into the conjugate number

a,' if we map this georretrical figure b,v an odd conformal transformation (Definition

I.1.2). What does this changing mean geometrically? if the characteristic number

of a tetraglobe is non-reai (if the tetraglobe is not degenerate) always a pair of

tetragiobes exists which do not differ in the magnitudes of their angles. they are

mirror images of each other. An odd conformal transformation maps a right tetra

into a left one.

Directions, positions and orientations of tetra-
globes

A tetraglobe in C can be given two direciions, two positions and two orienta-

tions.

Definition 4.L. The two directions in a tetraglobe are defined'*^zth the Ltrclp

of the perm,utati,ons of i,ts three angles o7. ) 0;

For(uard) d,irection dy :: {(or, az,os), (oz, e3, (t7), (*r, ar, az)}

Back(uard) direct ion du' . :  { (or ,  ar ,  as),  (*r ,  e2,cr t ) ,  (or ,  ar ,  oz)}

It is convenient to see *ap ) 0 as the neasuring numbers of the three tetra angles if

this tetraglobe possesses a forward direction; and to S€€ -cr6 ( 0 as the measuring

4 .
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CO}{FORMAL TRIGONOMETRY

numbers if this tetra is backward directed.

Definition 4.2. The two positions of a tetraglobe (in, its 2-dimen,si,onal stage

C) are defined with, th,e help of the unit i:

Out(uard)position by +i

In(uard)position by -i

Definition 4.3. The two orientations or spin directi.ons of a tetraglobe

defi,ned both by 'its directions and its posi,tions:

Right orientation s" :: {(+1., dJ), Fi, db)}

Left orientation s1 r: {(+;,, db), (-i, df)}

Remarks

1 . The terms 'for - back', 'out - in', 'riglrt - left' may be used with the opposite

sense, too. The chosen words are arbitrary. For example a tetra with an
'outward position' may also be seen as a tetra with an 'inrn'ard position' if

also the meaning of inward position' is changed in the same sense.

'Orientat,ion' and 'spin direction' are more suitable words to describe these

two possible states of a tetragiobe than for instance 'screw sense' ol 'sense of

rotation'. A conformal tetra possesses two 'spin directions' but not a centre

of rotation. ('Circulation round the centre of a circie' can be defined in

Euclidean but not generally in conformal geometry).

N,{athematics traditionally sees the imaginary unit as a point (or unit vector)

in the Gauss/Argand plane. I u.se as complex unit i, with i2 : -1, e

2 .

.)
t ) .
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(quaternionic) unit vector orthogonal to the tetragiobe and its 'stage' C

l2l i is helpful to see a tetraglobe together with its stage C as a structure
'swimming' with a fixed position in the natural 3-dimensional space of our

visual perception. if C is seen as such element in the 3-dimensional conformal

space the quaternionic unit i describes not only the in- and outu'ard position

of a tetra but also the position of this conforrnal 3-angle (and its C) in our

3-dimensional space. Only if in the Gauss plane (or Riemann sphere) a unit

of length exists. the complex i can be identified rvith the imaginarv unit in

the stage C.

Magnitudes of angles and trigonometric func-
tions defined by orthogonal tetras

Definition 5.1. A t,etragl,ohe is orthogonal or right-angled if on,e of the three

parameters ap, whi,c:h describe th,e ch,aracteri,stic number of th,is  -circle, is r12.

An orthogonal tetra can be used to measure an angle cp. It is expedient to substitute
',r,' by 'u' if the characteristic numbers of right angied tetras are used as angle

m,easurin,q tet.ras. If

a t : r 1 2 ,  a 2 : g ,  a 3 : r l 2 -  g  ( 5  1 )

characteristic numbgl 1ri of the orthogonal mea-suring tetra rn'ith these angles

u r  :  s i n - l  a 3 ' s i n  a 2 . s i n l 2 :  s i n c p . s i n - 1  ( " 1 2  -  g ) . " i " / '  :  i . t a n g  .  ( 5  2 )

A measuring right-angled 3-angle with the angles (5.1) has these 2 x 3 permutations

?rap of its characteristic number:

t ) *1  :  i - t angc  ' t ) - 1  :  -  i ' t an - r  g
' t . t + 2 :  c o s p . ( c o s  g  +  i  ' s i n , p )  ' u ^ - 2 :  c o s - 1  , p . ( c o s  g  -  i . s i n p )  ( 5 . 3 )
? ) * 3  :  s i n - 1  p .  ( s i n  g  +  i . c o s r p )  ? r - B  :  s i n r p .  ( s i n  g  -  i . c o s p )  ,

the

is
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so that
?,+ril+i - Lan*2 g u-ru-t - tan-2 g
Lt+2T+2: cos*2 g r)-2u-2:  cos-2 p (5 4)
?r+g?I+ l :  s in -2g  0-3CI -3 :  s in*2p .

The 2 x 3 permutations uas , the permutations of the characteristic number of the

measuring tetraglobe, can be used to define the 2 x 3 trigonometrical functions:

Def in i t ion 5.2.

tancccccp ' :  (zr*r l*r)r/2 tan-] ,p :- ( t t-1t-r)t l '

cosp , :  (u  t2ua2)1/2  cos- l  g  : :  ( t , -2r - r ) ' l '  (5  5)
.  - ' l  /  -  \ 1 / t  \ t / t

S ln  '  9 ' . :  ( ? t43? - ' a3J ' / -  S lO .p  : :  ( ? )_3U_3J ' / '

We no',r' have a new definition of classicai trigonometrical functions with the help

of the conformal cross ratios rvithout using any Euclidean structure.

In Article I [3] onlv real cross ratios were used for this definition: here we use

non-real cross ratios which are the characteristic numbers of ortho-tetras.

6. The conformal Pythagorean structure

In the following we define a structure which can help to discuss the connection

of conformal trigonometry to known forms of angle rneasurement.

Given a 2-circle Ull (rn'ith the circles U and ,I/ and the corners z and z') together

with a circle C which measures LIll. Tlie measuring points Lre 21 and 4 on [I; z2

and za on H.

Definition 6.1. UH together wi,th C an,d the sir points z, z',21, gen,erate a corl-

forrnal Pythagorean structure.

At first we use this structure to discuss the connection between the measurement

of angles with a measuring circle (compare Definit ion I.8.1 and Equation (I. i.S))

and with an orthogonal tetraglobe.
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The Pythagorean structure may be completed by the circles A : zyzz2 and

A' : z3ztz2.

We especialll' discuss the angle in UH with the measurlng points 21 s.fid 24.

This angle and its magnitude is called @. The characteristic number. measuring

this angle in'ith the help of C, is u : (rrz2eza) (Also here we substitute u, of

Definition I.7 .2 by a new letter u because the cross ratio t^l is especially a measuring

number).

So with (I.7.8) it follows

u - -tan2(ol2)

To compare the angle measurement by C and the measurement by a right-angled

tetra both the triangle zz3z4 (with the pole z2) and the triangle z'424 (u'ith the

pole z2) are used.

2-circle LH and 2-circle AA' are 2-circles in conformal position in the 4-circle

zz'z2zs. Therefore the rnagnitude of the angle p appears also as magnitude of

the angle zz3zt (with the arc ZZ3 afi A and the arc z'4 on A'). z and z' are

svrnmetrical points in relation to the symmetry C; ts and za are fi.xed points of this

symrnetry. So we can use not only C but also the orthogonal triangle zz3z4 (with

the angle p : z\24) or tire orthogonal triangle z'2324 (rn'ith the angle g' : z'zsz+)

for measuring of 6 : 2P - 2g' because the symmetricai angles rp, g' ate eqrtai,

g : g ' , a n d / : e + p ' .

The characteristic numbers of the orthogonal tetragiobes zz24z4 and z'22424

are conjugates because both are in a symmetric position,

( 6 . 1 )

(6.2 )

(6  3 )

u t  :  * i ' t a n g
,

L ) 1  :  - X ' I a n p

And because p : gt : $f 2:

u 1  -  l i . t , a n  $ 1 2 O t  :  - i . t a n q l 2
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This together with (6.1) leads to

9 _ '
( / l  . ._  r /1  -  u  . (6 4)

(Compare ( I .9.6))

Theorem 6.1-. If an, angle, Q 'is m,easured by the real characterzsti,c (measurin,g)

number u and, also by t,he imaginarg m,easuring number u1 (or T1) the equation

(6.0 describes the conn,ecti.on between these dtfrerent, measuring numbers.

Th.e two conform,al posszbiliti,es to m,easure angles are com,patible.

The Pythagorean figure shows the connection between the measuring rn'ith the

help of an orthecircle and rn'ith the help of an ortho-tetra, but also an essential

difference: With ortho-circles measured angles are not directed. But if an angle

is part of an ortho-tetra the two possible directions of this tetragiobe can be used

to give also an angle a direction.

Theorem 6.2. The 2 x 3 permutations uap of an ortho-tetra for measuring an

an,gle g : Al2 an.d the 2 x 3 permutat'ioTLS u+1, of an ortho-circle for measuring

th'is angle g : Ql2 are connected by

u + l  : - t ' + i i l + t : I t ?  L l - 7 :  - ? ' - t ? ' * t  _ l T 2 - / l

?L+2 :  l :+ZT+2  '11 ._ �2 :  Z , -ZT-Z  (6 .5 )

U+3 :  ?:+ld+g 1I-B :  t ' -311-3

I call these equations the conformal Pythagorean equations. They are proved

by comparing (I.9.2) and (5 4)

7. The Pythagorean structure in Euclidean loca-
tion

In general location the Pythagorean srrucrure was used to discuss the connec-

tion tietween the angle measuring with a real and with a non-real cross ratio.
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To compare conformal and Euclidean structures we use the Pythagorean figure

in a special, Euclidean location. We chose 22 : oc (see Section 6), ,n: 0 and

describe C by the equatron z: Z. So the other points are simpl€ 23 : p, zt - -q

and z : i . h.with real p, Q, h.

Tiil now we have not left the conformal standpoint, we have only chosen a

special location of the conformal stnicture to make easy the reckoning, Together

with C, ,4, defined in Section 6, we rise the cocircle B : zztzr, too. If we also use

a Gauss plane to illustrate the Pythagorean structure the tetra z1z2z3z appears

as the conformal triangle z1z3z represented by the three Euclidean straight lines

A , B , C '

Theorem 7 .I. A Pyth,agorean f"gure with the li,nes A, B, C., H possesses three con.-

formall,y equal tetras

wzth

a 'uJ 
' . :  

lzz24za) .

Proof. Using our special location we have

c l l
a c - D q - c w

b'u ::  (z1z2zza), ,6  : :  (z1z24z)

a u  :  i .  h l p

b ' u :  i ' q l h

c,rr  :  *(pq -  h,2 -  i .  h(p+ q))  ( t f  + pr)- t

u+r :  (z1z24za)  :  -q lp

?)+1 -  s. t -  :  i '  h lp

U+)  :  - t ' *1F+1 :  Uz* t  (6  5 )

h 2  :  p . Q
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(7.3)

(7 4)

/ ?  ( \
\  r . . J /

{ .  / . 0 , )

Together with

and because

it follows

( i .7)



If this is used in (7.3) and (7,4) we get

b ' u r : 1 , . q l h  :  i . h l q :  a w

- ( p q  -  1 , , 2  -  i .  h ( p  +  q ) ) ) ( p '  +  h ; ) - '
i  . h(p + q))(p' + h')*t - i. h,(p + q)(p' + pq)- 1

CONFORMAL TzuGONOMETRY

(7  8 )

:  i . h l p :  a w .  
( 7  9 )

4 t l
c w

:

and

So

and Theorem 7,1 is proved.

l r l
a w - 0 w - c w

E

In Euclidean location the three tetras with equal characteristic numbers are

represented by the three orthogonal triangles u'ith the hypotenuses a, b, c on the

lines ,4. B, C . Therefore Theorem 7.1 is the conformal expression for the Euclidean

theorem that every orthogonal triangle together with its height can be seen as a

system of three similar triangles.

In discussing the equation (7.7) we can go on to compare the 'Pythagorean'

structure of an Euclidean right-angled triangle and the structure of our conformal

Pythagorean figure. In conformal geornetry we have only used h, p,Q as real num-

bers to fix the location of points. But in Euclidean geometry h,p,Q can be seen as

lengths of the height and of distances on the lrrpotenuse c : p + q. In Germany

we say: h2 : p.q is an eiernent of a set of four 'Py'thagorean theorems'

h 2  :  P ' Q  ,  c ' p :  a 2 c . q : b 2  ,  c z  :  a 2  + b 2 (7.10)

In Euclidean geometry ali Pythagorean theorems can be deduced by using the

similarity of the three triangles with the hypotenuses a, b. c. So our Theorems 7.1

and 6.2 describe the conformal background of these four Pythagorean

theorems.

A more detailed discussion of those structures of an Euclidean right-angled

triangle that can also be seen as structures of the conformal P5rthagorean figrre
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is not the subject of this Section. But
Pythagorean formulae (6.b) of Theorem

I wanted to emphasise that the conformal
6.2 and especially the conformal equation

has in

its Euciidean equivalent. (N4ore directly as p . Q : h2 the formr ila (T]2) simulates
the form of (7.11) and expresses u,hich ratios are related). The Euclidean theorem
starts with lengths and ratios of such lengths, the conformal theorem is based on
cross ratios onlv.

The Equations (6'5) does not show its relation with the measurement of angles.
Also p 'q - h2 does not show the implicit connection to the Euclidean form of
angle measurement. Particrilarly rn'e have answered the following qriestion: Where
does the conformai clouble possibilitl, of measuring angles with real and complex
cross ratios get their expression at the Eur:ridean lever?

u t : u ?

qlp - (hld'

( z  t t \
\  r . r r /

(7.12)

The conformal P;rthagorean structure
with (7.6) that the conformal and the
are compatible because in this location

in its Euclidean location shows directly
Euclidean measurement of angles

t ,ang : :  u t / i :  h lp  . (7 .13)

Also the different startingpoints can be seen: h.p are.sides of a right-angled Eu-
clidean triangle' 2r1 is the measuring nurnber of an orthogonal tetra. This conformal
characteristic number is defined without using Euclidean rensths.

The measurements of angles with the help of Euclidean triangles or with confor-
rnal ortho-circles and ortho-tetras are not onil- compatible but Euclidean geometry
and conformal geometn' define an equivalent measurement of angies by using dif-
ferent starting points. The two ways to construct trigonometry are different but'diametrical': 

Euclidean trigonometrl.starts with right-angled Euclidean triangles,
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RUTHENBERG

and one'complex' family

u)+t

u)_r
i(r + ivtr)
itr - i.,n) 1 8  4 )

This family (8.a) with onll' two different elements is generated by the especially

symmetrical tetraglobe with 3 equal angles et: a2 - a3: r13.

Remark

I see tetraglobes 'swimming' in the natural space, carried b), its conformal

sphere C;. Every non-degenerate tetragiobe can be seen as a coordinate system of
its 'individual 2-dimensional world' C;. This world gets an indzu,idualbut complete

Euciidean structure if the fourth point of its coordinate tetra is seen as an absolute
point 2o6".

I see a remarkable quality of such individual 2-dimensional tetra-worid: It pos-

sesses an internal trigonometry and the spin of its coordinate system describes its
externai position in tire 3-dimensional conformal space hut a d,iameter of this con,-

formal globe is n,ot defined. \Ve may regard such conformal sphere C; and every

tetra in ttris globe as smali ('point') or as big ('plane') as u'e like. But because

lengths are not defined, concepts such as 'srnall' and 'big' have no exact (objec-

tive) meaning. Botir modeis (point. plane) ma1' be interchanged just as phvsicists

change between 'particie' and 'rvave element'. \,{v particle model of C; and its
tetraglobes is a pure mathematical model. As it is helpful to regard physical par-

ticles as conformal tetraglobes the especially symmetric tetra (8.4) ma}, turn out
to be particular interesting.

The sine law of a tetraglobe

Euclidean trigonometrv defines trig<-rnometric functions b1' ratios of sides in
right-angled triangles. Conformal trigonometry defines such functions rn'ith the help
of characteristic numbers (cross ratios) of orthuclrcles and, orth,utetras. Euclidean

9 .
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COI\FORMAL TRIGONOMETRY

trigonometry discusses also the reiation of angles and sides in scalene triangles. In

the following we discuss how conformal trigonometry may describe the relation of

angles and sides in general tetras (and its triangles), also.

Every tetraglobe possesses 2 x 3 complex invariants ?rrao aod also 2 triples of

reai invariants uo6^, u-ofr-n. In the following we interpret the meaning of these

real triples invariantly bound with every tetraglobe.

Looking at the situation in Ericlidean geometry I defi.ne:

Definit ion 9.1. (taownlt/2 are the. rat ios of 3 sides a,r,a2;a3 eri ,st i ,n,g in euery

t,et,raolobe.

With this definition and with ( 1.3) of Theorem 1. 1 it follows for such ratios of sides

(at la,z) ,  @rlot) .  (o3f  a1):

(o, t lor) :  s in a1f s ina2, Qolo ' t ) :  s in a2f s inas,  (o, t lot) :  s in a3f s inal  -

(s .2)

Definition 9.2. Equations (9.2) describe th,e conform,al sine lata of a tetra-

globe.

It is important to see the difference of this conformal law and the Euclidean one.

Equations (9.2) may formally also be written with help of a proportionalit5' factor

2o :

at  :  2p '  s in  47,  .

However in conformal geometry'the length of a side a7, and the factor p does not

have an objective (invariant) meaning. Euclidean geometry is characterised by an

other sitriation: Here e\rery o,p c&n be seen as (the length of) a side and p can be

seen as radius of a circumcircle, more exactly as length of this radius.

1 1 1
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RUTHENBERG

if we dra'*' a tetra in Euclidean location, using a Gauss plane, the tetra is

also represented by an Euclidean triangle together with its circumcircle, But one

must remember that this Euclidean triangle is oniy an illustration of a conformai

3-angle. The circumcircle is oniy a konformkreis without centre and radius. In this

special location we may - for illustration only - use a pair of compasses to draw this

konforrnkreis as a circuntcircie. But if we do nc;t leauve the conformal standpoint

we do not have a radius p of this circle and a length of a side in the triangle.

Rernarks

1. In mathematics one writes a number in the polar coordinate form z : p.siv.

We can aiso use this representation of a complex number z by such a pair

(p, p) for describing conformal structures if we do not geometrically interpret

sttch coordinates as elements of Euclidean geometry. Only traditionally we

interpret these polar coordinates with the help of Euciidean geometry: p is

the length of a radi:us. g measures t,he rotat,i,on about an origin. Conformal

trigonometry of tetraglobes leads t,o p'ure angle coordinates of a complex

number

z :  s in-1 a3 .  s in a2 .  exp( ia1).  Dc.o :  v

Einstein reflected the inrariant theoretical situation of metrical basic num-

bers. His result was: Phvsics only possesses a unit of time and mass in

relation to an individuai coordinate system. Therefore I cornpare the situ-

ation of a physicist sitting in a coordinate system of special relativity with

the situation of an observer rn'ho is sitting on a conformai tetraglobe. This

person may interpret a fourth point of the tetraglobe as the absolute point

oo and use an indi'u'idual unit po of lengths. But this observer has a probiem:

Ttre length unit p6 cs.nnot generally be compared n'ith an individual lengtlt

unit p[ in another tetraglobe.

The last remark may help to understand the essential difference of the sine

law in Euclidean and in conformal geometry. It may also suggest the question

2

3 .
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CONFORMAL TRIG ONOMETRY

if conformal geometry can help to analyse the axioms and conditions which

determine a coordinate system of special relativity. Einstein gave a new

interpretation of the Lorentz transformations which allows one to compare

the basic units of time and mass in two inertial systems. But has theoretical

ph;'sics constructed and discussed a model of inertial systems'? I think a

tetraglobe as a model of a physical coordinate s},s1sm. This system has a

defined structure. But this structure is on the conformal level defined without

using 'straight lines', 'length' and '(inertial) ntovernents' on such lines.

( 1 0 . 1 )

(10 .3 )

10. On Pythagoras' theorem

The equation

c o s 2 g * s i n 2 g : \

is traditionally seen as the trigonometric form of Pythagoras' theorem. But in

[3] this equation was proved as an equation between angie functions without any

relation to a (conformal or Euclidezin) orthogonal triangle (cf. [i,9.4]).

Euclid does not use angle functions to formulate Pythagoras' tlieorem.

The conformal analogy of P1'thagoras' theorem is (for example)

' l ' - c T - � l l  * ? ' - " 8 - " : 1' t a ' T a  ,  _ - o _  - u (10 .2 )

formula related to a right-which follows from (6.5) together rn'ith (I.5.6). In this

angled tetraglobe angle functions too do not appear.

This equation, rn'hich describes the relation between two cross ratios in any

orthogonal tetra, can be written in a more usual form if the (conformal) concept

of 'rati,os of si,des (in a tetraglobe)' is used:

( o l r ) ' *  ( b l c ) 2  : 1

1 1 3
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If and only if the right-angled tetraglobe possesses an (individual) unit of length,
this conformal Pythagoras' equation can be transformed in the classical Euclidean
form

a 2 + b 2 : c 2 (10.4)

In developing elementary Euclidean geometry as a conformal invariant theorl, I
couid expose the conformal fundamentals of Euclidean sinus law and of pythago-

ras' theorem. If and only if the individual geometry of a tetraglobe possesses a unit
Iength not only rati'os of triangle sides but also lengths of such sides can be mea-
sured; sine lau'and Pl'thagoras' theorem can be formulated in the usuai Euciidean
form with the help of such unit length.

In revealing the conformai background of Euclidean
could prove that some fundamental Euclidean theorems
ones:

geometry this article also

are essentially conformal

- Euciidean angles with their apexes on an Euclidean circie and subtended by the
same arc of this circie are equal becarne these angles are in a, conformal positi,on
to the same angle.

- Euclidean triangles possess the angle sum zT- because a conformal tetraglobe pos-
sesses this angle sum.

In every Riemannian differential geometrv Pythagoras' theorem is still valid
in the local spaces. Pythagoras' theorem is generally not ralid iri the conformal
space' The question is how Riernann's rn'av to generaiise geometry can be changed
for getting a differential geometrical form of conformal geonretry. This question
is not a new one. To generalise conformal geometry Cartan [1] and Schouten [4]
went a non-Riemannian u'a)'which rn'as used also by Thomas lb], V'eblen [6] and
Yano [8]. In this connection Weyl's modification of Riemannian geonetry aiso has
to be seen [7]. But can mal,hematics give the ver], special structure of conformal
tetraglobe geometry a non-linear (non-homogeneous, non-integrable displacement)
form only bY using the basic conceptions (and formalisms) of Cartan. Levi-Civita.
Ricci lt.+l t

1 1 4
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CONFO RMAL TRIGONOMETRY

In holding onto the Riemannian idea of local tangenti,a/ spaces we may miss the

right way to build the differential geometrical form of conformal tetra geometry.

Is it sufficient to substitute the Euclidean group in the tangent spaces bv a centro-

conformal group (Cartan. Schouten) (or to suppose that a metrical tensor g;r

possesses an undefined factor (Weyl)) to give the conformal geometry of tetraglobes

a non-linear form?

A repeatedll' 31L"6 question in which form conformal geometry rnay be gener-

alised in the sense of differential geometry (and function theorl') has to give a new

answer in such a way that

- onll' conformal circles exist, not Euclidean straight lines and Euclidean circies,

- angles and magnitudes of angles are defined u'ithout using the concepts of straight

lines and lengths,

- tetraglobes are first elements of olrr space, not points.

How can a non-integrable displacement (Ubertragung, connection) be defined

between in,di.uidual tetraglobes, not between local Langent spaces?

Riemann's generaiisation from 2 not only to 3 but to n dimensions was a

natural step. A corrformal generalisation is onl;,- consistent rvith the specific shape

of conformal tetra geonretry if the characteristic restriction of this geometry to (2

and) 3 dirnensions is an essential part of this generalisation, too. Classical complex

anaiysis is not only b1' chance restricted to the two dimensions of normal complex

mrrnbers. I want to see the strape of this classical complex calculus generaiised to

tlrree dimensions in such a way that everybody can understand the theory as the

differential geometrical generalisation of conformal tetra geometry.

1 1 <
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11. On angle units

Trigonornetry defines measurement of angles but not the unit of angle measur-

Ivfathematics and physics do not possess a natural length unit but they possess

a n,atural anole un,it.

Do we not possess a natural number to describe the natural angle unit? For in

the last 2000 years scientists have used several angle units to describe the natural

angle unit, for example the numbers

4. 360. 2r

Is it optimal to use the length 2n of an Euclidean unit circle to describe the

magnitude of angles in conformal tetra structures which generally do not possess

a length unit? And why do rn'e not use a unit to describe the natural angle unit?

If we want to use a unit to describe the natural angle unit I see two possibilities:

We can use the real  uni t '1 'or  the imaginary uni t ' i , .

Many formulae in physics suggest that the Planck constant h should be replaced

hl2tr. Why not - in this connection - substitute the angle unit number 2zr by

The substitution 2r --- 1 may be triyial if we compare it with the substitutions

2n * 2iri or 2r --" i .

i thought it helpful to use i as unit nurriber for iengths and impulses [2]. Sometimes
it may aiso helpful to describe some parts of physics by using i as unit number of
the natural angle unit.

For the following I emphasise the difference of the quarernionic i (with i2 : -I)

and the imaginary unit i (rn'ith i : \A) used in l2].

by

t?

1 1 6



CONFORMAL TRJGONOMETRY

In speciaiising the vector part of a quaternion to a right-angled isosceles triangle

which represents the quaternionic unit i we get by equation (1.2) of [ 2, page 127]

and together with the fundamentai metrical equation ch': i

i :  h ,c2 j :  t t c (c j ) :  hc ] - : iL  (11 .1)

with a vector 3 right-angled to the triangle, describing the position of this triangle

in the 3-dimensional space, with

( j  i ) :  + L  , ( 1 1 . 2 )

where ( ) denotes the scalar prodrrct.

And

l : : c j ,  I ' : : 1 o 1 : * 1  ( 1 1 . 3 )

where o denotes the quaternionic product.

I  cai l  (11 1)

i :  i l

the n,atural product representation of the quaternionic unit i by the imaginary unit

i and the position 1 of the unit i. (In my natural metrical system (r,h): (I. i) i

represents Pianck's constant, L Einstein's velocitl'' of iight)

Ilsinp' the firnction theoretical connections

i  .s inqr :  s inh(zg) ,  cosg :  cosh( iP) ( 1 1 . 4 )

we reach t\^,,o parametric descriptions of the characteristic t,etra numbers, for ex-

ample

w + r :  s i n - l  o 3 . s i n o 2 ' e x p { ( 1 i ) a 1 }  :  s i n h - t ( r o . ) ' s i n h ( i a 2 ) ' e x p { 1 ( i o 1 ) }  .  ( 1 1 - 5 )

I describe the distinction betrveen both formally equivalent parametric representa-

tion of tual in the following way:

TI7
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Real angles a" together with a spin unit i: iL and circular trigonometrical

functions can be rised to describe the characteristic number of a tetra.

Aiternatively:

Imaginary angles fao together with a unit 1 and hyperboiic trigonometrical

functions can be used to describe the characteristic number of a tetra.

The hyperbolic form

w(ot ) :  exp{1( i " r ) }  :  cosh( ia , )  +  1  ' s in i r ( ia1)  (11"6)

remembers Einstein's description of special relativity. We come a step nearer to

this description if rve change the angle unit number from 1 to i, so that angles are

real, if we use an hyperbolic parametric representation; and angles are imaginary

if we use the circular representation.

Such change of the angle unit number does not change the trigonometrr* of a

tetraglobe. Unit numbers as 4, 360, 2r, I. 2ri or i. used for describirig the natural

unit clf angles, are only' corrvention.

L2. Concluding remarks

Equation (11,6) has the Einsteinean hyperbolic form of the Lorentz operator

W . If we represent this operator in the circular form s'ith an irnaginary angle unit

we have the connection to \{inkowski's model: He interpreted Lorentz transforma-

tions as Euclidean rotations with imaginary angies. I can only formally, rzu'ithout

visrral elements realise this concept. But I can visualise W as a triangie with angles

measured b)' un imaginary unit number.

1 1 8
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We have a ne\ / interesting situation if the trigonometrical restriction a* { 7r

is abandoned. With real domain the circular functions possess a periodical, the

hyperbolic functions a non-periodical function theoretical continuation if e* ) T.

On the Euclidean levei the periodical continuation of the circular functions with

real arguments can be illustrated with the help of the movement of a point (with

constant velocity) on a circle. A Lorentz transformation can be seen as a physical

movement on a straight Iine rn'ith constant velocity (inertial movement) and can

be used as a model of the non-periodical continuation of an hyperbolic function.

These Euclidean geometrical (physical) models of the analytic continuation of both

sets of trigonometric functions are not transferable to the conformal level for on

this level the difference of 'circie' and 'straight line' is gone. The 'mouement on,

strar,ght l,ines', an axiom of special relativity, is lost on the conformal level. Can we

see here a first cause for the experiences that onlrr,' periodical functions ('u'aves')

can help to describe movements in micro.phl'sics? Ail conformal lines (circies) are

topologically equiralent to Euclidean circles.

This paper gives a new geometrical interpretation of complex numbers as char-

acteristic numbers of tetraglobes. In my next article 'Quaternions as spherical.

particles of 3-dimensional conformal space' I interpret quaternions as directed and

centred tetraglobes. These quaternionic figures, onll' defined by angles, are the

basic eleurents of a natural 3-dimensional conformal space. The sken' field of

quaternions in this space of our visual perception rnust be seen as the con,for-

mal background of a 'length-metrical' ph1,si6al u'orld. Only in such world, u'hich

is described by u.nits of lengths, space and tirne are 'separated'. The locality of a

4-dimensional event ('point') in this space can be described if one tetraglobe wltich

possesses units of lengths is used as a Cartesian coordinate system. But'local'ity'

exists in such space if and only if units of lengths can be defined.

1 1 9
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