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Conformal Background of Euclidean
Trigonometry

Klaus Ruthenberg

Abstract. Essential parts of Euclidean trigonometry can be seen as
trigonometry of conformal tetraglobes. Metrical basic structures of natu-
ral 3-dimensional space may be defined with the help of tetraglobes as first
elements of this space, without using Euclidean basic concepts as ‘straight
line’, ‘length’ and ‘locality’.

Introduction

This paper is the second part of the work reported in [3] which for brevity will
be denoted by ‘Article I', and L.x will denote item numbered x in I, that is, in [3].
Measurement of angles and elementary angle functions were defined in Article 1
with the help of real cross ratios, the characteristic numbers of 2-circles (Definition
[.6.1). Here we interpret a complex cross ratio as the characteristic number of a 4-
circle, which leads to a conformal form of Euclidean trigonometry. Four points and
the four circles through any three of these points produce a 4-circle or tetraglobe.

The traditional form of Euclidean trigonometry defines the measurement of angles

2000 Mathematics Subject Classification: Primary: 30C35;
Secondary: 30E99.
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RUTHENBERG

by ratios of sides in right-angled triangles and describes the relationship between
lengths and angles in Euclidean triangles. This classical form of trigonometry
starts with the Euclidean concept of ‘lengths’ of ‘straight lines’. This article
shows that a conformal form of Euclidean trigonometry can be constructed by
starting with the conformal concept of cross ratio (double ratio). Essential parts
of this construction can be done without using lengths of straight lines. Only at
last, after the measurement of angles and the conformal form of trigonometry are
defined, we may add the concept of length if we (physically) possess units of length.
This ‘diametrical’ possibility to construct Euclidean trigonometry produces a new
picture of our natural 3-dimensional space. This space (of our visual perception; of
physics) can be seen as a conformal space with tetraglobes as first (basic) elements.
The trigonometry of tetraglobes defines the (trigono)metrical basic structure of this
space. But only if units of length are added (can be added) the natural space gets

a complete Euclidean structure.

1. The parametric description of the cross ratio

I want to show that for the Euclidean triangle the sum of angles has a conformal

substratum. We take three complex numbers

1

wy, = sin™! ag - sina - €4

1

wy = sin”! o - sinag - €2 (1.1)

ws = sin" Yoy - sinay - €493

with 0 < o < 7 and define

Definition 1.1. The three compler numbers wy are called representatives, the

three real numbers oy, the arguments of a cycle {wy}.

Lemma 1.1. If the representatives of a cycle can be seen as the cyclic permuta-

tions of a cross ratio ((1.5.2) - (1.5.4)) the sum of the three arguments is 7.
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Proof. If the wy are the cyclic permutations of a cross ratio with (I1.5.4) we have

Wy -Wer W3 = -1
e’L'EQk — _1

and together with a; > 0

S oy = (1.2)

Lemma 1.2. If Y ay = w, the three representatives wy of a cycle are cyclic

permutations of a cross ratio.

Proof. With 5~ ay = 7 we get

wi(l —w;) =
=sin" az-sinay - e?* (1 — sin~! ay - sina; - €299)

=sin" a3 (sinay - €! —sina, - el )

=sin"' a3z (sinay - €' +sina, - e7?2)
=sin"t a3 (sinag-cosa; +i-sinay - sina; +sina; - cosag — - sinay - sinasg)
-sin(a; + a9)

It
&
=}

|

Q

w

The cyclic permutations w; and ws fulfil the first equation of (1.5.3). Also the

second and third equation

u's(l—wg) = 1

’11)2(1 - UJ]) = 1
can be proved by replacing the indices. ]
Because every non-real number w or its inverse w™! can be written in the form
sin"as - sinas - elea
with 0 < ax < 7and > ay =7 we get
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Theorem 1.1. The 2 x 3 different permutations of a non-real cross ratio can al-
ways be written in their parametric forms

wyp = sin"!(4a3) - sin(+ag) - el+en) gy = sin"!(—~ay) - sin(—a3) - etl-a)
wig = sin" (+aq) sin(+ag) - 27wy =sinT}(—a3) - sin(—a) - e2(-%2)  (1.3)

wig = sin~H(+ay) - sin{+oy) - elHas) gy g = sin™}(—a;) - sin(—ay) - ell-a3)

with the help of 3 real parameters ay, 0 < ax < 7, and > ay = 7.

2. The conformal tetraglobe

We get a geometrical interpretation of the cross ratio parametric description

with the help of a conformal basic figure:

Definition 2.1. Four points and the four conformal circles through any three of

these four points produce a 4-circle or tetraglobe (tetra).
Remarks

1. It is helpful to see four points on one circle as a degenerate 4-circle.

2. ‘Tetra’ remembers that a 4-circle possesses four dual elements:
- Three points are on every circle.
- Three circles go through every point.

3. Tetra-’globe’ remembers that the four points of every (not degenerate) 4-
circle define a sphere in the 3-dimensional conformal space; a sphere which

‘carries’ the 4-circle. This conformal sphere is a ‘stage’ where the tetra can

be conformally moved.
4. A tetraglobe possesses six 2-circles (Section 6 in [3]).
Definition 2.2. Two 2-circles of a tetra without common corners are 2-circles in

conformal position.
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I use the expression ‘2-circles in conformal position’ as Germans use the set

phrase ‘Figuren in projektiver Lage (figures in projective position)’.

Two 2-circles in conformal position ‘generate’ a 4-circle. Conversely a 4-circle

can be seen as two 2-circles in conformal position in three ways.

It is often helpful to discuss a conformal tetraglobe in a special, 'Euclidean’

location.

Definition 2.3. A tetraglobe is in an Fuclidean location if one of its corners

15 the point z = oc.

Remark

1. If we use the traditional Gauss/Argand plane to illustrate a 4-circle in Eu-
clidean location, each tetraglobe looks like an Fuclidean triangle together
with its circumcircle. But in conformal geometry the point z = oo is not a
non proper point; the circles through z = oo appear, if we use this illustra-
tion, like Euclidean straight lines but they are conformal circles; the circle
through the three corners of such an ‘Euclidean triangle’ is a conformal circle

without centre and radius.

2. It is often helpful to draw conformal circles in the Gauss plane with a ruler
but often a 4-circle drawn on a Riemann sphere gives a better picture of a
tetraglobe. For example this model demonstrates more directly the symmetry

of every tetraglobe.

Theorem 2.1. Each conformal tetra is a geometrical entity with a symmetry group

of four elements.
Proof. Always a conformal mapping exists which transforms a 4-circle with the
four points z; into a special location so that

z217=0, 2o0=1, z3=o00, 24 =a, (2.1)
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where the complex number «a is determined by the special shape of the tetra.

With
271=0 — 2=1
=1 — =0 (2.2)
23 =00 — Zy=a

we define the mapping
z2—2 2z —a(z+2)+a=0, (2.3)
which changes z1, zo into z3, z1 and z3, z4 into z4, z3.

In pairing other points in the same way we get the tetra’s symmetry group with

the four elements

Z—2z=0

Zz—a=0
Zz—(Z+z2)+a=0 (24)

Zz—a(Z +2)+a=0.
0

Theorem 2.2. If two 2-circles of a tetraglobe lie in a conformal position their

angles are equal.

Proof. With the three non-identical symmetry mappings every pair of 2-circles in

conformal position interchange their positions. O

Definition 2.4. Ewvery three points of a tetraglobe define a conformal triangle;
the fourth point is the pole of this triangle. Each point pair of a conformal triangle
defines a side of this triangle. Each pair of the sides, arcs on the tetraglobe’s

circles, defines an angle of the triangle

Theorem 2.3. The four conformal triangles of a 4-circle are conformally equiva-

lent; every triangle of a teira has three angles of the same magnitude.
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Proof. Each conformal triangle of a tetra can be transformed into every other one

with a suitable element of the tetra’s symmetry group. O

If we identify an angle with its magnitude and if we neglect the difference of
‘angle’, ‘apex angle’ and ‘adjacent angle’ (Definition 1.6.2) one may say that at
most three different angles exist in a tetraglobe. These three angles appear in
each triangle of the tetraglobe as angles of this triangle. Because in this sense
a tetra possesses at most three different angles we also call such a tetraglobe a
3-angle. This word emphasises both the relationship of a conformal tetraglobe
with an Euclidean triangle and the difference between an Euclidean triangle and a

conformal 3-angle.

3. The characteristic number of a tetraglobe

Four points 2, define exactly one conformal, complex cross ratio and exactly
one tetraglobe. In M and in "M (with even )\) this number w is invariantly bound

with the tetra.

Definition 3.1. The complex cross ratio of the four tetraglobe points is the char-

acteristic number of the 4-circle.

Therefore the characteristic number of a tetraglobe has 2 x 3 ‘permutations’,

namely the 2 x 3 variations (1.5.2) of the cross ratio (1.5.1).

Definition 3.2. The three real parameters oy of the parametric representation
(1.8) of a cross ratio are the magnitudes of the three angles of a conformal 3-

angle (tetraglobe).

This definition suggests itself because ) ay = 7 (Theorem 1.1); and in a Gauss

plane a tetraglobe in Euclidean location appears as an Euclidean triangle, which
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also has this angle sum. That this definition is also admissible I prove in the fol-
lowing by comparing the measuring of angles by a tetraglobe with the measuring
of angles in Euclidean trigonometry and with the help of a measuring circle (Defi-
nition 1.7.1). If a cross ratio is seen as the characteristic number of a tetra, often

qualities of a cross ratio can be seen as attributes of a tetraglobe, for instance:

A cross ratio possesses only 2 x 3 different permutations, because the three
angles with the three positive magnitudes +ay and the three negative magnitudes

—ay (Theorem 1.1 with (1.3)) have only 2 x 3 permutations.

The characteristic number w of a tetraglobe changes into the conjugate number
W if we map this geometrical figure by an odd conformal transformation (Definition
1.1.2). What does this changing mean geometrically? If the characteristic number
of a tetraglobe is non-real (if the tetraglobe is not degenerate) always a pair of
tetraglobes exists which do not differ in the magnitudes of their angles, they are
mirror images of each other. An odd conformal transformation maps a right tetra

into a left one.

4. Directions, positions and orientations of tetra-
globes

A tetraglobe in € can be given two directions, two positions and two orienta-

tions.
Definition 4.1. The two directions in a tetraglobe are defined with the help
of the permutations of its three angles ax > 0:
For(ward) direction  d; = {(a1, a9, 03), (@2, a3, 1), (a3, 01, 00) }
Back(ward) direction  dy := {(ag, a1, a3), (a3, a9, 1), (03, a3, a9)}
It is convenient to see +ay > 0 as the measuring numbers of the three tetra angles if

this tetraglobe possesses a forward direction; and to see —ay < 0 as the measuring
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numbers if this tetra is backward directed.

Definition 4.2. The two positions of a tetraglobe (in its 2-dimensional stage
C) are defined with the help of the unit 4:

Out(ward)position by +1

In(ward)position by —i

Definition 4.3. The two orientations or spin directions of a tetraglobe are

defined both by its directions and its positions:

Right orientation s, := {(+1, d;), (—, dy)}

Left ortientation s := {(+1%, dp), (-3, d;)}

Remarks

1. The terms ‘for - back’, ‘out - in’, ‘right - left’ may be used with the opposite
sense, too. The chosen words are arbitrary. For example a tetra with an
‘outward position’ may also be seen as a tetra with an ‘inward position’ if

also the meaning of ‘inward position’ is changed in the same sense.

o

‘Orientation’ and ‘spin direction’ are more suitable words to describe these
two possible states of a tetraglobe than for instance ‘screw sense’ or ‘sense of
rotation’. A conformal tetra possesses two ‘spin directions’ but not a centre
of rotation. (‘Circulation round the centre of a circle’ can be defined in

Euclidean but not generally in conformal geometry).

3. Mathematics traditionally sees the imaginary unit as a point (or unit vector)

in the Gauss/Argand plane. I use as complex unit 4, with i = —1, a
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(quaternionic) unit vector orthogonal to the tetraglobe and its ‘stage’ C
[2]. © is helpful to see a tetraglobe together with its stage C as a structure
‘swimming’ with a fixed position in the natural 3-dimensional space of our
visual perception. If C is seen as such element in the 3-dimensional conformal
space the quaternionic unit ¢ describes not only the in- and outward position
of a tetra but also the position of this conformal 3-angle (and its C) in our
3-dimensional space. Only if in the Gauss plane (or Riemann sphere) a unit
of length exists, the complex 7 can be identified with the imaginary unit in

the stage C.

5. Magnitudes of angles and trigonometric func-
tions defined by orthogonal tetras

Definition 5.1. A tetraglobe is orthogonal or right-angled if one of the three

parameters oy, which describe the characteristic number of this 4-circle, is 7/2.

An orthogonal tetra can be used to measure an angle ¢. It is expedient to substitute
‘w’ by ‘v’ if the characteristic numbers of right angled tetras are used as angle

measuring tetras. If
a1=7r/2702=g0,a3=7r/2—99 (51}

the characteristic number vy of the orthogonal measuring tetra with these angles
is

vy =sin"l oy sinay- €/ =sing-sin" (7/2 — ) 2 =i tang.  (5.2)

A measuring right-angled 3-angle with the angles (5.1) has these 2x 3 permutations
vy of its characteristic number:

ve) =1-tang vop=—1-tan"}

Vig = cos - (cosg +1-siny) v_g=cos lp- (cosp —1-siny) (5.3)

vig=sin"l g (sinp+i-cosp) vz =sing- (sing —i-cosyp),
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so that
v1T1 = tan*?e v, T =tan?p
Violyg =cost?p v gT_g=cos 2 (5.4)
vi3l43 =sin2¢  v_3T_g=sin"2y.

The 2 x 3 permutations vy , the permutations of the characteristic number of the

measuring tetraglobe, can be used to define the 2 x 3 trigonometrical functions:

Definition 5.2.

tanp = (v41741)"?  tan~l g = (v_y0_)"?
o5 1= (vy9Tsa) 0 1= (v_gT_a)'"? 5.3)
sin™! ¢ := (v,370,4)Y2 sing = (v_gv_3)/?

We now have a new definition of classical trigonometrical functions with the help

of the conformal cross ratios without using any Euclidean structure.

In Article I [3] only real cross ratios were used for this definition; here we use

non-real cross ratios which are the characteristic numbers of ortho-tetras.

6. The conformal Pythagorean structure

In the following we define a structure which can help to discuss the connection

of conformal trigonometry to known forms of angle measurement.

Given a 2-circle UH (with the circles U and H and the corners z and z') together
with a circle C' which measures UH. The measuring points are z, and z3 on U; 2,

and z4 on H.

Definition 6.1. UH together with C and the siz points z,2', 2z, generate a con-

formal Pythagorean structure.

At first we use this structure to discuss the connection between the measurement
of angles with a measuring circle (compare Definition 1.8.1 and Equation (1.7.8))

and with an orthogonal tetraglobe.
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The Pythagorean structure may be completed by the circles A = 2322, and

A" = 232" 29.

We especially discuss the angle in UH with the measuring points z; and z4.
This angle and its magnitude is called ¢. The characteristic number, measuring
this angle with the help of C, is u = (21202324) (Also here we substitute w of
Definition 1.7.2 by a new letter u because the cross ratio u is especially a measuring

number).

So with (1.7.8) it follows
u= —tan’(¢/2) . 6.1)

To compare the angle measurement by C and the measurement by a right-angled
tetra both the triangle zz3z4 (with the pole zp) and the triangle z'z32z4 (with the

pole z3) are used.

2-circle UH and 2-circle AA’ are 2-circles in conformal position in the 4-circle
22'z92z3. Therefore the magnitude of the angle ¢ appears also as magnitude of
the angle 2232’ (with the arc zz3 on A and the arc 2’23 on 4'). 2 and 2’ are
symmetrical points in relation to the symmetry C; z3 and 24 are fixed points of this
symmetry. So we can use not only C but also the orthogonal triangle zz3z4 (with
the angle ¢ = zz3z4) or the orthogonal triangle 2'z3z4 (with the angle ¢’ = 2'2324)

i

for measuring of @ = 2¢ = 2¢’ because the symmetrical angles ¢, ¢’ are equal,

p=¢,and =+
The characteristic numbers of the orthogonal tetraglobes zz92324 and 2'zpz324
are conjugates because both are in a symmetric position,
vy = +1-tangp 7, = ~1-tany . (6.2)

And because p = ¢’ = ¢/2:

<
|

vy =+i-tang/2 1= —t-tan¢g/2 . (6.3)
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This together with (6.1) leads to
V=1 =u. (6.4)

(Compare (1.9.6))

Theorem 6.1. If an angle ¢ is measured by the real characteristic (measuring)
number u and also by the imaginary measuring number vy (or T;) the equation

(6.4) describes the connection between these different measuring numbers.

The two conformal possibilities to measure angles are compatible.

The Pythagorean figure shows the connection between the measuring with the
help of an ortho-circle and with the help of an ortho-tetra, but also an essential
difference: With ortho-circles measured angles are not directed. But if an angle
is part of an ortho-tetra the two possible directions of this tetraglobe can be used

to give also an angle a direction.

Theorem 6.2. The 2 x 3 permutations vsy, of an ortho-tetra for measuring an
angle p = ©/2 and the 2 x 3 permutations usg of an ortho-circle for measuring

this angle ¢ = @/2 are connected by

Upl = =004 =05 Uy = =0T = T2,
Uyp = ’U_FQF.*_Q U_g = V_oU_9 (65)
Upz = U303 U_3 = V_3l_3

I call these equations the conformal Pythagorean equations. They are proved

by comparing (1.9.2) and (5.4).
7. The Pythagorean structure in Euclidean loca-
tion

In general location the Pythagorean structure was used to discuss the connec-

tion between the angle measuring with a real and with a non-real cross ratio.
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To compare conformal and Euclidean structures we use the Pythagorean figure
in a special, Euclidean location. We chose z; = oc (see Section 6), z4 = 0 and
describe C by the equation z = Z. So the other points are simple z3 = p, 21 = —q

and z = 7 - h with real p, ¢, h.

Till now we have not left the conformal standpoint, we have only chosen a
special location of the conformal structure to make easy the reckoning. Together
with C, A, defined in Section 6, we use the cocircle B = zz,29, too. If we also use
a Gauss plane to illustrate the Pythagorean structure the tetra z,z,z3z appears
as the conformal triangle z;z32 represented by the three Euclidean straight lines

A, B,C.

Theorem 7.1. A Pythagorean figure with the lines A, B, C, H possesses three con-
formally equal tetras

W =W = LW

weth

oW = (2202324), yw o= (2120224), W = {z;20232) . (7.1)

Proof. Using our special location we have

o =1t-hfp (7.2)
yw =1-q/h (7.3)
aw=~(pg—h*—i-hip+q)(r* +p°)7". (7.4)
Together with
Uy = (2122232%) = —q/p (7.5)
vy =qw=1-h/p (7.6)
and because Uy = —vaTq =02, (6.5)
it follows
h=p.q. (7.7)
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If this is used in (7.3) and (7.4) we get

yw=1%-g/h=1-hj/g=,w (7.8)
and
aw = —(pg—h*—i-hip+q))(p’ + k") o (7.9)
= i h(p+q))(p* +h*) =i h(p+q)(p*+pg)t =i h/p=.w.
So
W= pW = W
and Theorem 7.1 is proved. ]

In Euclidean location the three tetras with equal characteristic numbers are
represented by the three orthogonal triangles with the hypotenuses a,b,c on the
lines A, B, C. Therefore Theorem 7.1 is the conformal expression for the Euclidean
theorem that every orthogonal triangle together with its height can be seen as a

system of three similar triangles.

In discussing the equation (7.7) we can go on to compare the 'Pythagorean’
structure of an Euclidean right-angled triangle and the structure of our conformal
Pythagorean figure. In conformal geometry we have only used h, p, g as real num-
bers to fix the location of points. But in Euclidean geometry h,p, ¢ can be seen as
lengths of the height and of distances on the hypotenuse ¢ = p + ¢. In Germany

we say: h® = p - ¢ is an element of a set of four ‘Pythagorean theorems’
R=p-q, c-p=a*, cqg=b, F=a"+b". (7.10)

In Euclidean geometry all Pythagorean theorems can be deduced by using the
similarity of the three triangles with the hypotenuses a, b, ¢. So our Theorems 7.1
and 6.2 describe the conformal background of these four Pythagorean

theorems.

A more detailed discussion of those structures of an Euclidean right-angled

triangle that can also be seen as structures of the conformal Pythagorean figure
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Is not the subject of this Section. But I wanted to emphasise that the conformal

Pythagorean formulae (6.5) of Theorem 6.2 and especially the conformal equation
uy = v? (7.11)

has in

q/p = (h/p)® (7.12)
its Euclidean equivalent. (More directly as p- ¢ = A2 the formula (7.12) simulates
the form of (7.11) and expresses which ratios are related). The Euclidean theorem

starts with lengths and ratios of such lengths, the conformal theorem is based on

cross ratios only.

The Equations (6.5) does not show its relation with the measurement of angles.
Also p- g = h? does not show the implicit connection to the Euclidean form of
angle measurement. Particularly we have answered the following question: Where
does the conformal double possibility of measuring angles with real and complex

cross ratios get their expression at the Euclidean leve]?

The conformal Pythagorean structure in its Euclidean location shows directly
with (7.6) that the conformal and the Euclidean measurement of angles

are compatible because in this location
tany = v /i =h/p. (7.13)

Alsc the different starting points can be seen: h, p are sides of a right-angled Eu-
clidean triangle, v; is the measuring number of an orthogonal tetra. This conformal

characteristic number is defined without using Euclidean lengths.

The measurements of angles with the help of Euclidean triangles or with confor-
mal ortho-circles and ortho-tetras are not only compatible but Euclidean geometry
and conformal geometry define an equivalent measurement of angles by using dif-
ferent starting points. The two ways to construct trigonometry are different but

‘diametrical’: Euclidean trigonometry starts with right-angled Euclidean triangles,
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uses lengths of sides in these triangles and defines trigonometrical functions (angle
measurement) by ratios of these sides. Not using ‘straight lines’ and ‘lengths’ of
these lines conformal trigonometry starts with 20-circles which constitute angles in
2!-circles. Tetras (2%-circles) are pairs of 2-circles in conformal positions. Angle
parameters describe the shape of tetras with the help of complex characteristic
numbers. And such characteristic numbers can be used to measure angles and to

define trigonometric functions.

The question, which parts of the Euclidean theory of right-angled triangles can-
not be sublimated by a theory of conformal Pythagorean structure, is interesting;

2

especially, which role Pythagoras’ theorem ¢* = a® + b% plays in tetra structures if

oo is not generally fixed. We discuss this question in Section 10.

8. Families of tetra numbers

Definition 8.1. The 2 x 3 permutations of a tetraglobe’s characteristic number

are a family of tetra numbers.

Because the members of such family are the permutations of the same cross ratio
these six numbers wyy are bound by the typical equations (1.5.2) - (I1.5.6). For

example the unit ¢ is member of the family

Wy =1 w_oy = —1
Wi = %(1 + Z) W_g = 1-1¢ (81)
u’+3:1+i u‘_3=%<1—'i).

This family of tetra numbers is generated by the tetraglobe with the three angles
a =7/2, ap=7/4, ag=7/4. (8.2)

Three and only three families exist with less than 6 (different) numbers, namely

the two ‘real’ families

Wy =w_;=-1 wy=w_3=0
Wig = Wog = % Wig = Wog = +1 (83)
Wig = W_og =2 Wig =W} = OO

109



RUTHENBERG

and one ‘complex’ family

(1+iv3)
- (8.4)

Wy = Wyg = Wyg =
W =W_g=W_3=

DO =00 |4t

This family (8.4) with only two different elements is generated by the especially

symmetrical tetraglobe with 3 equal angles a; = ay = a3 = 7/3.

Remark

I see tetraglobes ‘swimming’ in the natural space, carried by its conformal
sphere C;. Every non-degenerate tetraglobe can be seen as a coordinate system of
its ‘individual 2-dimensional world’ C;. This world gets an individual but complete
Euclidean structure if the fourth point of its coordinate tetra is seen as an absolute

point Zgps.

I see a remarkable quality of such individual 2-dimensional tetra-world: It pos-
sesses an internal trigonometry and the spin of its coordinate system describes its
external position in the 3-dimensional conformal space but a diameter of this con-
Jormal globe is not defined. We may regard such conformal sphere C; and every
tetra in this globe as small (‘point’) or as big (‘plane’) as we like. But because
lengths are not defined, concepts such as 'small’ and ‘big’ have no exact (objec-
tive) meaning. Both models (point, plane) may be interchanged just as physicists
change between 'particle’ and ‘wave element’. My particle model of C; and its
tetraglobes is a pure mathematical model. As it is helpful to regard physical par-
ticles as conformal tetraglobes the especially symmetric tetra (8.4) may turn out

to be particular interesting.

9. The sine law of a tetraglobe

Euclidean trigonometry defines trigonometric functions by ratios of sides in
right-angled triangles. Conformal trigonometry defines such functions with the help

of characteristic numbers (cross ratios) of ortho-circles and ortho-tetras. Euclidean
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trigonometry discusses also the relation of angles and sides in scalene triangles. In
the following we discuss how conformal trigonometry may describe the relation of

angles and sides in general tetras (and its triangles), also.

Every tetraglobe possesses 2 x 3 complex invariants w., and also 2 triples of
real invariants w,W,, w_,W_.. In the following we interpret the meaning of these

real triples invariantly bound with every tetraglobe.

Looking at the situation in Euclidean geometry I define:

Definition 9.1. (w, W,)"/? are the ratios of 3 sides a;,ay, a3 existing in every

tetraglobe.

With this definition and with (1.3) of Theorem 1.1 it follows for such ratios of sides

(a1/az), (az/az), (as/a1):

(a1/as) = sinay/sinag, (as/as) =sinay/sine;, (as/ay) =sinag/sinog .
(9-2)

Definition 9.2. Fquations (9.2) describe the conformal sine law of a tetra-

globe.

It is important to see the difference of this conformal law and the Euclidean one.
Equations (9.2) may formally also be written with help of a proportionality factor
2p:

ar = 2p-sinay . (9.3)
However in conformal geometry the length of a side a; and the factor p does not
have an objective (invariant) meaning. Euclidean geometry is characterised by an

other situation: Here every a; can be seen as (the length of) a side and p can be

seen as radius of a circumcircle, more exactly as length of this radius.
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If we draw a tetra in Euclidean location, using a Gauss plane, the tetra is
also represented by an Euclidean triangle together with its circumcircle. But one
must remember that this Euclidean triangle is only an illustration of a conformal
3-angle. The circumcircle is only a konformkreis without centre and radius. In this
special location we may - for illustration only - use a pair of compasses to draw this
konforinkreis as a circumcircle. But if we do not leave the conformal standpoint

we do not have a radius p of this circle and a length of a side in the triangle.

Remarks

1. In mathematics one writes a number in the polar coordinate form z = p- €.

We can also use this representation of a complex number z by such a pair
(p, @) for describing conformal structures if we do not geometrically interpret
such coordinates as elements of Euclidean geometry. Only traditionally we
interpret these polar coordinates with the help of Euclidean geometry: p is
the length of a radius, ¢ measures the rotation about an origin. Conformal
trigonometry of tetraglobes leads to pure angle coordinates of a complex
number

z=sin"" a3 -sinay - exp(ia;), So,=7.

2. Einstein reflected the invariant theoretical situation of metrical basic num-
bers. His result was: Physics only possesses a unit of time and mass in
relation to an individual coordinate system. Therefore I compare the situ-
ation of a physicist sitting in a coordinate system of special relativity with
the situation of an observer who is sitting on a conformal tetraglobe. This
person may interpret a fourth point of the tetraglobe as the absolute point
oo and use an individual unit pg of lengths. But this observer has a problem:
The length unit pg cannot generally be compared with an individual length

unit pj in another tetraglobe.

3. The last remark may help to understand the essential difference of the sine

law in Euclidean and in conformal geometry. It may also suggest the question
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if conformal geometry can help to analyse the axioms and conditions which
determine a coordinate system of special relativity. Einstein gave a new
interpretation of the Lorentz transformations which allows one to compare
the basic units of time and mass in two inertial systems. But has theoretical
physics constructed and discussed a model of ‘inertial systems’? I think a
tetraglobe as a model of a physical coordinate system. This system has a
defined structure. But this structure is on the conformal level defined without

using ‘straight lines’, ‘length’ and ‘(inertial) movements’ on such lines.

10. On Pythagoras’ theorem

The equation
cos? g +sinp =1 (10.1)

is traditionally seen as the trigonometric form of Pythagoras’ theorem. But in
[3] this equation was proved as an equation between angle functions without any

relation to a (conformal or Euclidean) orthogonal triangle (cf. [1.9.4]).
Euclid does not use angle functions to formulate Pythagoras’ theorem.

The conformal analogy of Pythagoras’ theorem is (for example)
VUi + v 30 _g=1 (10.2)
which follows from (6.5) together with (1.5.6). In this formula related to a right-

angled tetraglobe angle functions too do not appear.

This equation, which describes the relation between two cross ratios in any
orthogonal tetra, can be written in a more usual form if the {conformal) concept

of ‘ratios of sides (in a tetraglobe)’ is used:
(ajc)* + (b/c)* =1 (10.3)
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If and only if the right-angled tetraglobe possesses an (individual) unit of length,
this conformal Pythagoras’ equation can be transformed in the classical Euclidean
form

A+ =c. (10.4)
In developing elementary Euclidean geometry as a conformal invariant theory I
could expose the conformal fundamentals of Euclidean sinus law and of Pythago-
ras’ theorem. If and only if the individual geometry of a tetraglobe possesses a unit
length not only ratios of triangle sides but also lengths of such sides can be mea-
sured; sine law and Pythagoras’ theorem can be formulated in the usual Euclidean

form with the help of such unit length.

In revealing the conformal background of Euclidean geometry this article also
could prove that some fundamental Euclidean theorems are essentially conformal

ones:

- Euclidean angles with their apexes on an Euclidean circle and subtended by the
same arc of this circle are equal because these angles are in a conformal position

to the same angle.

- Buclidean triangles possess the angle sum 7 because a conformal tetraglobe pos-

sesses this angle sum.

In every Riemannian differential geometry Pythagoras’ theorem is still valid
in the local spaces. Pythagoras’ theorem is generally not valid in the conformal
space. The question is how Riemann’s way to generalise geomelry can be changed
for getting a differential geometrical form of conformal geometry. This question
is not a new one. To generalise conformal geometry Cartan [1] and Schouten [4]
went a non-Riemannian way which was used also by Thomas (5], Veblen [6] and
Yano [8]. In this connection Weyl's modification of Riemannian geometry also has
to be seen [7]. But can mathematics give the very special structure of conformal
tetraglobe geometry a non-linear (non-homogeneous, non-integrable displacement)
form only by using the basic conceptions (and formalisms) of Cartan, Levi-Civita,
Ricci [1,4] ?
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In holding onto the Riemannian idea of local tangential spaces we may miss the
right way to build the differential geometrical form of conformal tetra geometry.
Is it sufficient to substitute the Euclidean group in the tangent spaces by a centro-
conformal group (Cartan, Schouten) (or to suppose that a metrical tensor g
possesses an undefined factor (Weyl)) to give the conformal geometry of tetraglobes

a non-linear form?

A repeatedly asked question in which form conformal geometry may be gener-
alised in the sense of differential geometry (and function theory) has to give a new

answer in such a way that
- only conformal circles exist, not Euclidean straight lines and Euclidean circles,

- angles and magnitudes of angles are defined without using the concepts of straight

lines and lengths,
- tetraglobes are first elements of our space, not points.

How can a non-integrable displacement (Ubertragung, connection) be defined

between individual tetraglobes, not between local tangent spaces?

Riemann’s generalisation from 2 not only to 3 but to n dimensions was a
natural step. A conformal generalisation is only consistent with the specific shape
of conformal tetra geometry if the characteristic restriction of this geometry to (2
and) 3 dimensions is an essential part of this generalisation, too. Classical complex
analysis is not only by chance restricted to the two dimensions of normal complex
numbers. I want to see the shape of this classical complex calculus generalised to
three dimensions in such a way that everybody can understand the theory as the

differential geometrical generalisation of conformal tetra geometry.
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11. On angle units

Trigonometry defines measurement of angles but not the unit of angle measur-

ing.

Mathematics and physics do not possess a natural length unit but they possess

a natural angle unit.

Do we not possess a natural number to describe the natural angle unit? For in
the last 2000 years scientists have used several angle units to describe the natural

angle unit, for example the numbers
4, 360, 2rn .

Is it optimal to use the length 27 of an Euclidean unit circle to describe the
magnitude of angles in conformal tetra structures which generally do not possess

a length unit? And why do we not use a unit to describe the natural angle unit?

If we want to use a unit to describe the natural angle unit I see two possibilities:

We can use the real unit ‘1’ or the imaginary unit ‘7",

Many formulae in physics suggest that the Planck constant h should be replaced
by h/27. Why not - in this connection - substitute the angle unit number 27 by
1?

The substitution 2 — 1 may be trivial if we compare it with the substitutions
2m — 2w or 2w — 1.

I thought it helpful to use ¢ as unit number for lengths and impulses [2]. Sometimes
it may also helpful to describe some parts of physics by using ¢ as unit number of

the natural angle unit.

For the following I emphasise the difference of the quaternionic & (with 4> = ~1)
and the imaginary unit ¢ {(with i = \/=T) used in [2).
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In specialising the vector part of a quaternion to a right-angled isosceles triangle
which represents the quaternionic unit ¢ we get by equation (1.2) of [ 2, page 127]

and together with the fundamental metrical equation ch =1
i = he?j = he(cj) = hel =11 (11.1)

with a vector j right-angled to the triangle, describing the position of this triangle

in the 3-dimensional space, with
(JJ)=+1, (11.2)
where ( ) denotes the scalar product.

And
1:=cj, 1:=101=+1 (11.3)

where o denotes the quaternionic product.

Tcall (11.1)

1 =11

the natural product representation of the quaternionic unit 4 by the imaginary unit
i and the position 1 of the unit 4. (In my natural metrical system (c, h) = (1,1)

represents Planck’s constant, 1 Einstein’s velocity of light)
Using the function theoretical connections
i -sinp = sinh{iy) , cos ¢ = cosh(ig) (11.4)

we reach two parametric descriptions of the characteristic tetra numbers, for ex-

ample
w.y = sin"! ag-sin ay-exp{(1i)a1 } = sinh ™ (iag) - sinh(iay)-exp{1(ia1)} . (11.5)

1 describe the distinction between both formally equivalent parametric representa-

tion of w,, in the following way:
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Real angles o, together with a spin unit 2= 71 and circular trigonometrical

functions can be used to describe the characteristic number of a tetra.

Alternatively:

Imaginary angles ia, together with a unit 1 and hyperbolic trigonometrical

functions can be used to describe the characteristic number of a tetra.

The hyperbolic form
W{a;) = exp{1(ia;)} = cosh(ia;) + 1 - sinh{iay) (11.6)

remembers Einstein’s description of special relativity. We come a step nearer to
this description if we change the angle unit number from 1 to 7, so that angles are
real, if we use an hyperbolic parametric representation; and angles are imaginary

if we use the circular representation.

Such change of the angle unit number does not change the trigonometry of a
tetraglobe. Unit numbers as 4, 360, 27, 1, 27 or 4, used for describing the natural

unit of angles, are only convention.

12. Concluding remarks

Equation (11.6) has the Einsteinean hyperbolic form of the Lorentz operator
W. If we represent this operator in the circular form with an imaginary angle unit
we have the connection to Minkowski’s model: He interpreted Lorentz transforma-
tions as Euclidean rotations with imaginary angles. I can only formally, without
visual elements realise this concept. But I can visualise W as a triangle with angles

measured by an imaginary unit number.
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We have a new interesting situation if the trigonometrical restriction a, < 7
is abandoned. With real domain the circular functions possess a periodical, the
hyperbolic functions a non-periodical function theoretical continuation if a, > .
On the Euclidean level the periodical continuation of the circular functions with
real arguments can be illustrated with the help of the movement of a point (with
constant velocity) on a circle. A Lorentz transformation can be seen as a physical
movement on a straight line with constant velocity (inertial movement) and can
be used as a model of the non-periodical continuation of an hyperbolic function.
These Euclidean geometrical (physical) models of the analytic continuation of both
sets of trigonometric functions are not transferable to the conformal level for on
this level the difference of ‘circle’ and ‘straight line’ is gone. The ‘movement on
straight lines’, an axiom of special relativity, is lost on the conformal level. Can we
see here a first cause for the experiences that only periodical functions (‘waves’)
can help to describe movements in micro-physics? All conformal lines (circles) are

topologically equivalent to Euclidean circles.

This paper gives a new geometrical interpretation of complex numbers as char-
acteristic numbers of tetraglobes. In my next article ’Quaternions as spherical
particles of 3-dimensional conformal space’ I interpret quaternions as directed and
centred tetraglobes. These quaternionic figures, only defined by angles, are the
basic elements of a natural 3-dimensional conformal space. The skew field of
quaternions in this space of our visual perception must be seen as the confor-
mal background of a ‘length-metrical’ physical world. Ounly in such world, which
is described by units of lengths, space and time are ‘separated’. The locality of a
4-dimensional event (‘point’) in this space can be described if one tetraglobe which
possesses units of lengths is used as a Cartesian coordinate system. But ‘locality’

exists in such space if and only if units of lengths can be defined.
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